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ABSTRACT

We extend and merge Mahut’s and Newell’s car-following models to include heterogeneous
desired speeds of vehicles, which becomes relevant for proper mimicking of platoon formation
and evolution. The proposed model offers a complete description of traffic dynamics over a given
highway stretch, where delays occur at the end. Illustrative numerical examples are conducted
with several model specifications, showing scattering of the fundamental diagrams, the
“capacitydrop” phenomena, and stop-and-go waves related to “phantom jams”; therefore it shows
traffic hysteresis as well.
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1 INTRODUCTION

Vehicular traffic problems have been widely studied in several contexts for decades; researchers
have devoted important resources in order to have a more comprehensive understanding of
vehicular traffic phenomena, as these problems have grown rapidly in many places around the
world. In an effort to study control strategies for traffic congestion, and to optimize traffic control
more effectively in situations of high stress of the system, traffic simulation at different scales has
been the most utilized tool as through this technique it is possible to dynamically reflect the
characteristics of vehicle traffic flow. A relevant module of most simulation schemes at a
microscopic (vehicle) level is the car-following model, based on the idea that each driver controls
a vehicle, responding to the stimuli from the preceding vehicle.

Car-following models have a long history in transport, with more than 60 years of scientific
research, and their main premise is to try to mimic the particularities of vehicle movement across
roads; with the outstanding enhancement in computation power of the last decades, these models
have become essential part of most micro-simulation commercial packages, which are used in
transportation planning and evaluation in many cities and countries around the world (Barceld,
2010). Moreover, they are a key part of the design of intelligent transportation systems (ITS), and
naturally can be used for developing collision-warning and collision-avoidance (CW & CA)
systems (Brackstone & McDonald, 2000; Li & Sun, 2012). Obviously, further understanding of
car-following models becomes more and more important as advanced technologies develop.

In practically all car-following model specifications and frameworks proposed so far, the outputs
are speeds or accelerations of vehicles across (discretized) time. Thus, integration is needed to
determine the spatiotemporal trajectories of vehicles (e.g. for fundamental diagram analysis), or
the travel times across a given road length®. One remarkable exception is the car-following model
proposed by Mahut (1999, 2000), conceived from the idea of safe-stopping distances, whose
output are directly the time-space trajectories of vehicles; moreover, analytical travel time
functions can be determined for a given road length with delays at the end of the segment, feature
that improves computation times in networks as simulation along arcs over time is not required.
This model assumes identical vehicles in three parameters: desired speed, effective vehicle
length, and response time.

Independently, Newell (2002) states a car-following model based on spatiotemporal trajectories
analysis with linear spacing (depending on the platoon speed), whose propagation formula can be
seen as an extension of Mahut’s one in order to include heterogeneous space and time
displacements (or headways) across vehicles (effective vehicle length and response time in
Mahut’s context); Daganzo (2006) provides a discrete-time scheme to calculate the
spatiotemporal trajectories, and Laval & Leclerc (2010) enhances these formulae in a case of
time-varying space and time headways (and bounded acceleration), to mimic what authors called
“timid” or “aggressive” behavior, definitions aimed by empirical analysis . Subsequent empirical
studies with this model (e.g. Chen et al., 2012) suggest that the time-varying nature of time and
space headways triggers traffic hysteresis (Laval, 2011).

! This is especially relevant for micro-simulation packages, in terms of computation times and resources for
simulating transportation networks.
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In this work, we extend and merge Mahut’s and Newell’s car-following models in order to
include heterogeneous desired speeds of vehicles; this possibility was discussed informally by
Newell (2002) in several paragraphs of his paper, highlighting the relevance of desired speeds’
variability in platoon formation and evolution. The proposed model offers a complete description
of traffic dynamics over a given highway segment where, in addition, delays occur at the end of
such stretch (as done by Mahut, 2000). Notice that the conceptual basis of our proposed model
generates two independent traffic congestion sources: the propagation of disturbances, and the
asymmetric effect of speed differences along the road.

The structure of the paper is as follows. In Section 2 we summarize the related literature
considered fundamental for building our extended model, highlighting the details of the seminal
works for our proposal. In Section 3 we present all the details of our model, treating separately
each interesting case. In Section 4 we validate our model through illustrative simulation
experiments, to finally in Section 5 make all relevant analysis and conclusions together with
proposed further work in several interesting related research lines.

2 RELATED WORK

In Newell’s car-following model (Newell, 2002), if the nth vehicle is following the (n — 1)th
vehicle by time ¢, then the space-time trajectory of the nth vehicle at t, x,(t), will be a
translation, in both space and time, of the space-time trajectory of the (n — 1)th vehicle at time ¢,
Xn_1(t), that is to say,

X () = xp,(t — 7)) — dy 1)

The translation parameters 7,, A d,, in (1) are the space headway and the time headway of the nth
vehicle respectively, and therefore this model assumes a linear relationship between preferred
spacing s,, and the speed v of the lead vehicle, given by

sp(v) =d, +,v Vn,withv € [0,V;]

where V;, is the “desired-speed” of the nth vehicle; this last parameter was highlighted by Newell
(2002) as one of the determinants in the circulation speed of vehicles forming a platoon. In fact,
the author states textually “... Each driver would also have some desired speed V,, and if the
(n — 1)th vehicle should travel with v > V,, the nth would travel at the velocity V}, ... , and the
two vehicles would separate”. Moreover, regarding the speed of a platoon, namely v, he states:
“... The value of v could be the V}, for some vehicle downstream k < n”. It is worth mentioning
that Newell (2002) ends his article with the following sentence: “...To apply the theory one must
specify what happens at some points downstream presumably at some inhomogeneity in the
highway...If the present model is correct, future attention can be focused on where and why flow
changes originate.”; as the formula (1) is valid only under congested conditions, this model only
explains how disturbances propagate downstream in a platoon of vehicles.

Daganzo (2006) provides a time-discrete version of Newell car-following model (2002), given by

x} = min{xi! + vy, x4 — 2} Q)
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where i is the ith time-step, vy is the (common) free-flow speed, 7 is the duration of the time-step

(and the time headway), and A is the minimum possible spacing; the time-continuous version of
(2) is given by (Laval & Leclercq, 2010)

xn(t) = min{x, (t —€) + €Vf, X1 (t —T) — A} 3)

In the case of homogeneous vehicles (i.e. T, = 7,d, = 4, V,, = v Vn), there is a recognized
connection between Newell’s car-following model and the kinematic wave model based on a
triangular fundamental-diagram with jam density k = 1/4, free flow speed vs, and wave speed
w = — A/7; in fact, equation (3) is the exact mathematical solution of such a model (Laval &
Leclercq, 2010). Although this last equation is valid for almost any t = € > 0, in the literature it
is common to set € = 7. Later on, and motivated from empirical analysis of real-life vehicle
streams, Laval and Leclerc (2010) extends (3) in order to mimic what authors called timid or
aggressive driver behavior, in terms of deviations from its exact “Newell trajectory”; this was
conducted by including a dimensionless term 1, (t) multiplying both space and time headways in
(3), yielding the following specification

X, (t) = min{xn(t —€)+ min{evf, J?n(t)}, Xp—1(t =, (O)T) — 1y (t)l} 4)

The first term of (4) slightly differs from the first term of (3) as this model also includes
bounded-acceleration of vehicles, while the second term refers to the follower’ behavior with
time-variable headways; timid driver behavior exists when n,(t) > 1, whereas aggressive
behavior takes place with n,(t) < 1. In Chen et al. (2012), this model was validated using
empirical trajectory data from NGSIM (Next Generation SIMulation, 2010), unveiling that driver
heterogeneity (in terms of timid or aggressive behavior) can explain the spontaneous formation
and ensuing propagation of stop-and-go waves in congested traffic.

It is worth mentioning that the works of Mahut (1999, 2000) - who started from safe stopping
distance rules - obtained the same trajectory-relationship (1) as that of Newell under congested
regime? for homogeneous vehicles; furthermore, he actually solved the model for a given stream
of vehicles traveling across a one-lane highway of length X = KA for some K € N (this is done in
order to discretize space), with two special points: an origin, and an end. In the former, a demand
process that determines the effective departure times of vehicles is stated; for the latter, a
(exogenous) delay process is considered for every vehicle; in the sense of Newell (2002), these
are two basic inhomogeneities of a highway that permits to state a complete modeling
framework. In addition, Mahut’s solutions were obtained in terms of time-space trajectories
t,(x), which can be conceived as the inverse of the spatiotemporal trajectories, obtained by
simply rotating the x — t plane where the trajectories are, in 90° counterclockwise; one of the
main advantages of working with these trajectories is that initial conditions are naturally related
to the demand times, in contrast, in spatiotemporal trajectories the time dimension is measured
from the perspective of the nth driver, which precludes the correct interpretation of the term
Xn—1(t — T,,), and makes difficult the statement of initial conditions x,,(0). Although this can be
overcome by re-defining the x,,(t)’s to a universal time measure, in time-space trajectories the

2 This means that the Newell’s car-following model is collision-free.
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space measure is naturally universal, as the highway length to be covered is the same for
everyone. The author provides two specifications of the model: a cell-based approach and an arc-
based approach. In the former, space is discretized (with step size of 1) in order to simulate traffic
dynamics; in the latter, the computation of travel times does not require the simulation of
trajectories over the arc length, feature that considerably improves the performance in
computation resources compared with other well-known car-following models (e.g. Nagel &
Schreckenberg, 1992).

In the present paper, first we obtain a continuous-space version of Newell’s propagation formula
for the time-space trajectories t,(x), including vehicles with heterogeneous desired speeds, in
addition to different space and time headways as well. Then, we solve this extended model in a
Mahut-like context, that is to say, we assume a one-lane highway with two special points, origin
and end. In the former, an effective departure time process takes place in order to assure the
minimum spacing requirements (as the model is collision-free); for the latter, a delay is assigned
to every outgoing vehicle before actually exiting the highway, which can propagate downstream
if some conditions hold (roughly speaking, if the following stream of vehicles are close enough
each other).

3 METHODOLOGY

As a general framework, we consider a set of N drivers, and for each driver i we include three
parameters: the space headway d;, the time headway 7;, and the desired speed u;. In addition, we
consider a one-lane highway of length L, containing two special points: the origin, and the end of
the stretch. Next in section 3.1, we characterize the behavior at these relevant two points.

Additionally, in all subsequent analysis, we assume that the time-space trajectories are the
“cadlag” inverse of the spatiotemporal trajectories, in the sense that for every n™ vehicle, any
period of time in which the speed becomes equal to zero at a generic spatial-point x, say w;;, will
be captured by the time-space trajectories in the following way

t,(x) = t,(x7) + w¥, where t,(x~) = (Slir(r)lJr t,(x — &) (5)

that is to say, in the spatial-point x the function t, (x) has a horizontal jump of length w;;. As we
will see next, the end of the highway will be, in principle, the only point in space in which (5) is
stated as we impose delays right there.

3.1. Inhomogeneities of the highway
3.1.1 The origin of the highway

We assume in the origin that every driver i is endowed with a preferred time t; > 0 to enter the
highway; this instant is commonly referred in the literature as the “preferred” departure time, or
the demand time of such a driver. Now, for any given vector of demand times t, there is a re-
labeling o that sort drivers from early to late demand times; for the remainder of this work, it is
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assumed that t (and therefore o) are known and fixed. In order to make the formulae derived
hereafter more readable, we recognize o(n) as the nth driver; this maintains the classical
convention used in a car-following context.

When complete heterogeneous vehicles are included (i.e. different desired speeds and headways),
it is straightforward that equation (3) can be generalized to this setting by simply replacing vy by
the desired speed of the nth driver u,, T by the driver-specific time headway t,, and 4 by d,,,
that is to say

xn(t) = min{xn(t -6+ Eun:xn—l(t - Tn) - dn} (6)
Complementarily, from the definition of the time-space trajectories we have the following
identity

xn(tn (x)) = x Vn, in almost every point® x @)

This last identity permits to “invert” (6) on time, in order to obtain a specification for the time-
space trajectories t, (x). In fact, if we evaluate (6) at t = t,,(x), we have

x = xn(tn(x)) = min{x,, (t,(x) — €) + eup, x,,_1 (t,(x) — 1,,) — d,;}
= )
Xn(ta(x) —€) S x—€euy A xp_1(t,(x) —7,) < x +d,
Now, using (7), we have that

x — €Uy = x,(ta(x —€uy)) A x+dy = x1(tno1(x +dy))

In addition, the spatiotemporal trajectories are monotone and non-decreasing (as negative speeds
are not allowed). Combining these two facts into (8) gives the following inequalities for ¢, (x)

(@) th(x) =t,(x—08)+ ui

€)]
b) ta(x) = ta(x+dy) +1,
where § = eu,,. These inequalities can be combined in a single formula, which is
5
t,(x) = max {tn(x -8+ =, th(x +dy) + Tn} (10)

The final assumption is that drivers attempt to reach the distance x, starting from x — §, at their
minimum time*, which allow us to state equation (10) as an equality; that is to say

t,(x) = max{tn(x—S) +ui,tn_1(x+dn) +rn} (11)

3 The points in which this is not true are the so-called braking points.
4 This assumption is the same used by Daganzo (2005) for the derivation of formula (2).
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We impose that the initial conditions for (11) are precisely the (preferred) departure times, i.e.
t,(0) =t,Vvn (12)

It is interesting to see what happens when (11) is evaluated at x = §, and (12) is used; this leads
to

o)
t,(8) = max {ttn + o t,—1(6 +d,) + ‘L'n}

n

By taking the limit § — 0%, we obtain the following relationship

tn(0+) = (sll)r(r)k tn(8) = max{tn: th—1(dy) + Tn} (13)

The limit> ¢, (0%) is defined as the effective departure time of the nth vehicle, and correspond to
the earliest feasible time instant in which the vehicle can actually depart from the origin (instead
of the preferred departure time) due to the presence of the preceding vehicle on the road.

3.1.2. The end of the highway

Equation (11) permits the computation of time-space trajectories for a given distance x,; it is
easy to see that for the nth driver, the relevant value of the time-space trajectory for the (n — 1)th
driver corresponds to the time needed to reach distance x, + d,,, and for this driver the relevant
value of the time-space trajectory for the (n — 2)th driver corresponds to distance xo + d,, +
d,_1, and so on; in all these steps, we are assuming that preceding vehicles are still on the road.

What happens at the end of the highway is that drivers experience delays before they can actually
exit from it; this means that vehicles spend positive time intervals at the same place, which are
precisely the cases in which the spatiotemporal trajectories cannot be inverted in the sense of (7);
in this case, we use the expression in (5) in order to compute the value of the time-space
trajectory for distance L, that is to say, t,(L) =t,(L7) + w, Vn, recalling that t,(L™) is
conceptually the instant in time when the nth vehicle reaches the end of the highway. Moreover,
we impose that when the (n — 1)th vehicle finally exits, at time instant t,,_; (L), its influence (in
terms of the following process) over the nth vehicle ends; this clearly has an impact in the
behavior of the latter vehicle up to this point, and therefore on the value of t,,(L7).

To illustrate what happens, let us think that the nth vehicle were actually following the (n — 1)th
vehicle by time instant t,_,(L) when this vehicle finally exits the highway segment; this
disturbance, that we call the vanishing of the (n — 1)th vehicle, is realized by the nth driver at
time t,,_, (L) + 7. If we evaluate (1) with t = t,,_, (L) + t,, we will obtain

xn(tn—l(L) + Tn) = xn—l(tn—l(L) + Tn — Tn) - dn =L- dn

o . 5. . .
5 The limit has the expression max{t,, t,_,(d,) + 7, } because t, + ——is a linear function.
n
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Then, by the time the nth driver realizes that the (n — 1)th vanishes, there is still a distance d,, to
be covered for reaching the end of the highway. As there are no other obstacles within the nth
vehicle and the end, this distance d,, is traveled at the desired speed u,; then, the time instant

d
th1(L) + 1, + =

un
highway, and therefore the following lower bound for t,,(L) can be determined

captures the precise moment for the nth driver to reach the end of the

d
to(L) = t,_1(L) + 1, + u—" + wy
n

In general, as the time-space trajectories are non-decreasing, we can state the following identity,
for a given 0 < § < L: t,(L7) = t,(L—6) +ui. This is true as when the nth driver is at
distance L — & by time t, (L — &), the end of the h?ghway can be reached in a time instant at least
equal to t,(L — &) + f—n; besides, the limit when § — 0F of the right side equals t,(L™). Then,

we can bound t,, (L) from below by
)
to(L) = t,(L—6)+—+ w,
un
The combination of the previous lower bounds for t,, (L) yields

5 d
£,(L) = max {tn(L = 8) b (1) + 7 + u—”} +w,
n

n

At this point, we assume that drivers attempt to exit the highway in the minimum possible time,
which is equivalent to state the last inequality as a equality. All the previous analysis analysis
allow us to state the following system of equations for the endpoint of the highway

)
t1(L) =t,(L—9) tooto
(14)
) dn
tn(L) = max {tn(L -8+ o’ tp—1 (L) + 7 + u_} + wy

Equations (11), (12) and (14) can be discretized simply by considering x to be an entire multiple
of 6, as well as L and the space headways d,,; this discretization scheme is presented in section 4,
in order to conduct simulations.

4. SIMULATIONS AND DISCUSSION

In this section we will show through numerical examples the impact of our modeling approach on
capturing the fact of observing heterogeneous drivers, agglomeration due to depart time choices,
and propagation of delays downstream on highway traffic; the impact is measured by comparing
our framework with a lead vehicle problem (LVP), a Mahut-delay instance (MD), and the
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combined instance of the previous two®, under two scenarios with full-heterogeneous drivers:
deterministic and stochastic driver behavior. In the former, the car-following parameters d,,, T,
and u,, are fixed across simulations; for the latter, we allow these parameters to vary within each
simulation step. In order to simulate the time-space trajectories generated by our proposed model,
we discretized space in steps of a given length § > 0; the space-discrete traffic dynamics for the
stream of vehicles (except the first) comes from (11) and (14), with x to be an integer multiple of
6, as well as the space headways d; and the highway length, i.e. d; =7;6,1; €N Vi and L =
M3§. In fact, taking x = k& in (14) and L = M§ in (17) yields

max{t,’i‘1 + 2 kg Tn} ifk+r, <M

w1

g ={ek14 S ifk+1,>MAk<M (15)

n

— [ ) .
max{t,’f’ 1+u—,t,’f’_1+rn+%}+wn ifk=M
n n

where tX = t,, (k&) Vk,n. In (15), it is understood that t = t,, Vn, i.e. the initial conditions are
the preferred departure times, which come from sampling iid uniform distributions with support
on the interval [ty ,tmax]. In order to provide a complete picture of the traffic dynamics
generated by the model, we include three possible instances:

1. A lead vehicle problem (LVP), which consists in assuming a given discrete-space
trajectory {t¥:k = 0,..., M} for the first driver, and with no delays at the end, i.e. w, =
0 Vnin (15).
2. The Mahut-delay instance (MD), that is to say, a free-flow behavior for the first driver
(e th =tk 1+ ui Vk < M), with delays w at the end for all vehicles’.
1

3. The combined LVP+MD instance, which is simply the LVP problem considered in point
1, in addition with the delays at the end given in point 2.

It is worth mentioning that specification 3 uses the same LVP trajectory of specification 1 and the
same delays of specification 2 in order to construct an adequate benchmark when comparing the
different specifications. The LVP trajectory for specifications 1 and 3 is obtained first by
sampling circulation speeds u¥ for every space-step k using a (continuous) uniform distribution

Umin t¥max
2

on the interval [u, ], where u, is a “minimum-circulation” speed, and then assuming a

(random) given subset Brk c {2, ..., M — 1} of braking points, and a braking time t°; with these
ingredients, the LVP trajectory® is constructed as follows

Ifk & Brk, then t{ = tf~ + &/uf ;ifnot, tf = ¢f =" + ¢°

For specifications 2 and 3, the delays at the end of the stretch are sampled from an uniform
distribution over the interval [Wyin , @max]-

¢ This instance encompasses a lead vehicle problem, with delays at the end.
. . 5
7 For the first driver, this means that ¢t} = ¢t~ + —+w
1

8 In specification 3, the last term of the LVP trajectory changes slighty to tM = tM~1 + § /ul! + w,
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The (integer) space-headway 7, for the nth driver is sampled from a (discrete) uniform
distribution over the range {min "max), the time-headway T, comes from sampling a
(continuous) uniform distribution with support on the interval [T, , Tmax]» and the desired speed
U, is given by an uniform random variable over the interval [Upyin , Umax]; WE assume that all
these random variables are independent and identically distributed. The parameters of the
simulations are showed in Table 1, next.

Table 1. Parameter values for simulations

Parameter | Value Units Parameter | Value Units
N 100 Vehicles Cin 1 Hours (from zero)
) 0.01 | Kilometers Cax 3 Hours (from zero)
M 1500 - Tiin 10 Seconds
Wmin 20 Seconds Tmax 30 Seconds
Wmax 40 Seconds Umin 40 Kilometers/Hour
Tinin 4 - Upax 120 Kilometers/Hour
Tmax 10 - Ug 1/4 Kilometers/Hour
Ax 0.4 Kilometers At 0.2 Hours
70 0.04 Hours K 5000 -

The parameters Ax and At are related to the calculations of fundamental-diagrams using Edie’s
method (Edie, 1965) over the time-space trajectories; more precisely, Ax and At are the spatial
and temporal size of the window used to calculate the aggregate measures of flow, density and
speed; in these calculations, a random set of K rectangular windows in the x —t plane are
generated randomly.

4.1. Scenario A: deterministic driver behavior.
In this scenario, the simulated time-space trajectories are shown at Figure 1

Figure 1. space-time trajectories for scenario A
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(¢) Trajectories under the integrated instance

First of all, it is clear the effect of different desired speeds in platoon formation, merging and
diverging across the road in these graphs. In fact, under the MD instance, we can clearly see how
these different desired speeds have a significant impact on the magnitude of delays propagation;
under this setting, there are more propagation of delays due to platoon rising and merging across
the highway segment. As expected, disturbances propagates as a random-walk, because the
headways parameters varies across drivers. The associated fundamental diagrams are presented in
Figure 2 next.

Figure 2. Fundamental-diagrams for scenario A.
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(c) speed vs density diagrams

Now, for the flux-density diagrams, there is a major impact in the non-congested branch; when
different speeds are considered, the uncongested branch of the diagram becomes a highly dense
cloud of points; in fact, it is easy to realize that this cloud is constrained inside a cone (i.e. an area
between two straight lines), with boundaries given by the free-flow diagrams q = ku of the
fastest and the slowest vehicle respectively, and the mentioned cone is the area between these
segments. Inside this cone we found all (k, q) points calculated using a time-space window that
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captures only propagation of speed differences. Therefore, the classical assumption of a single
straight line for the non-congested branch can be inadequate when full heterogeneity of vehicles
is considered, and the extent of this bias is related to the range of fluctuation of the desired
speeds. It is worth mentioning that hysteresis is not present in this model by construction, as
drivers on a platoon comply with (1) at all times; therefore, the acceleration and deceleration
paths becomes the same. Besides, it is known that Newell’s car-following model (Newell, 2002)
does not reproduce hysteresis; Laval (2011) and Ahn ef al. (2013) argued that hysteresis is more
related to timid or aggressive driver behavior (in terms of deviations from “Newell trajectories’),
which can be added to the framework by letting d; and 7; to vary with time. We address this issue
in the next scenario, where we allow the model parameters to vary between simulation steps, as
developed in Section 4.2 next.

4.2. Scenario B: stochastic driver behavior

In this scenario, we allow the vehicle’s parameters 7, 7, and u, to vary between simulation
steps; the space-discrete scheme for this case becomes

) K
max{t’,f‘1 +—, it g rﬁ} ifk+rf<Mm
u

é
th={th1+— ifk+rf>MAk<M

m-1, 9 u o 0 :
maxyty -+, tpi vt t—rtw, ifk=M
u u

n n

where 7,¥,7¥ and u¥ are the nth vehicle’s parameters at step k. The r;¥’s are sampled using a

discrete uniform distribution over the range {r;, — Ar, r;, + Ar}, with Ar being a natural number
such as 1, — Ar > 1Vn; in the simulations performed it was chosen Ar = 3. For the 7,{’s, a
continuous triangular distribution is used over the interval [Tpin,Tmax],» With maximum
probability at 7,,. Finally, the speed u¥ is taken equal to u® = u,, + u*, where u* is drawn from
an uniform distribution over the interval [—Au,Au], for a given value of Au; in simulations,
Au = 30 was considered. The simulated trajectories are shown at Figure 3.

I

Figure 3. . space-time trajectories for scenario B

- (a) Trajectories for the LVP instance - (b) ijectoriesfor the MD instance
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(¢) Trajectories under the integrated instance

As expected, the simulated trajectories exhibit “phantom jams” (some of them highlighted in
Figure 3.c in the zoom area); they appears due to the same reasons stated by Laval (2011) and
Ahn et al. (2013), that is to say, by the deviations of the vehicle headway’s parameters across
time. Moreover, as the headways are varying constantly, the propagation path also changes
constantly, even for the same set of vehicles, and therefore delays or another disturbances can
either expand or contract, depending of the behavior of the vehicles forming the platoon at that
specific point in time, and then, it is expected this model to generate hysteresis as well, as it is
very similar to the model developed by Laval and Leclerc (2010) where hysteresis loops are
shown.

The fundamental diagrams for this case are the following

Figure 4. Fundamental-diagrams for scenario B
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(c) speed vs density diagrams

In the same line of reasoning of previous scenarios findings, the LVP instance still reaches high-
flux states due to the discharging of the platoon caused by the first vehicle; most surprising, the

XVI Congreso Chileno de Ingenieria de Transporte — Santiago — 21 - 25 Octubre 2013



A driver-heterogeneous car-following model 14

other instances reach higher flux-states, compared with previous scenarios: one explanation of
this could be the randomness induced by step-varying headways and speeds, which precludes
reaching these high states, where all vehicles behave in a deterministic way.

5. Synthesis and conclusions

We extend Mahut’s and Newell’s car-following models in order to include vehicles with different
desired speeds. The model establishes a comprehensive description of traffic dynamics over a
given highway segment, with delays occurring at the end. Illustrative numerical examples of
time-space trajectories and fundamental diagrams derived from such trajectories were presented
in the last section, showing that the proposed model exhibits the “capacity-drop” phenomena, as
well as wide scattering in all fundamental diagrams.

Besides, congestion generated by speed differences is clearly observable from the trajectories in
Figure 1, showing the effect of considering full heterogeneity in vehicle streams. In addition, a
stochastic version was also simulated, showing the presence of phantom jams and stop-and-go
waves, related to the hysteresis phenomenon.

This model completes the story started by Newell: the congestions arise because of heterogeneity
of desired speeds, agglomeration due to departure time choices, and downstream propagation of
delays at the end of the highway. This model generates platoons even in the absence of delays,
and also predicts merging and diverging of platoons across time and space, triggered by speed
differences as well as the (downstream) propagation of disturbances.
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