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ABSTRACT

We propose a convex optimization urban planning problem for a wide class of objective
functions. The dual of this problem is computed and the existence and uniqueness of the primal-
dual solution are guaranteed under suitable conditions. A convergent algorithm is proposed,
which solves the primal and dual problems simultaneously. Finally, our framework is illustrated
by an application for the case where the planning goal is to attain spatial socio-economic
homogeneity and numerical simulations are implemented.
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Land use planning problem: a primal-dual splitting algorithm

1 INTRODUCTION

Megacities face chronic problems like congestion, segregation, urban sprawl, and high land rents,
in addition to crime and the recent concern about climate change. These can be seen as costs of
development, much of which occurs in cities, but they are also a complex challenge for the decision
maker (city planner). Methods to study how to plan cities have so far concentrated on simulating
the long term impacts of project and policies defined as future scenarios. Land use and transport
models contribute in this task forecasting the impact of each scenario considered and is fair to say
that these models have advanced in the last two decades to become operational and widely used
by practitioners, which can be assessed from reviews in Wegener (1994, 1998), Hunt et al (2005),
Timmermans and Zhang (2009) and Preston et al (2010).

However, the scenario approach leaves the planner with the enormous task of building wise scenar-
10s. This is a complex task because potential subsidies and projects in the urban context can be a
large number and testing each scenario is computationally costly. Consider for example the prob-
lem of a planner with some specific goal for the city armed with power of setting location subsidies
and/or taxes to attain such goal. This policy yields a combinatorial number of subsidies/taxes con-
sidering options of agents and locations to be taxed; for a population size C' the estimate for the
number of subsidies/taxes rise to N x C, where NV is the number of locations. Consider now the
goal of managing vehicles congestion in a network with 1. links and C' vehicle types and M socio-
economic groups, then the combinatorial number of link charges is of the order of L - C' - M. In
sum, the problem of setting policies/projects scenarios that contribute to optimize the city perfor-
mance for some given goal and then test each scenario using land use and transport models is not
really feasible; there is a need to develop models able to optimize the city by efficiently searching
in the large domain of policies and projects.

The objective of this paper is to contribute in the development of methods able to optimize the
city performance given the planners objective. In this general aim, our approach avoids defining
a specific objective function, instead it defines a class of functions on which we can apply our
method to optimize a city by proceeding in four steps. In the first step we use either the model
developed in Bricefio-Arias et al (2008), for the case without externalities, or the model in Bravo
et al (2010) to include externalities, which solves the equilibrium problem yielding the location
7 and travel times ¢ without any policy. The second step, which is the matter of this paper, aims
at finding a location optimum x*(t), for a given set of travel times and a given objective function
belonging to the class mentioned above and defined in the following section. We call this step
the land use planning problem. Step three remains for future work, where we will extend our
methodology to optimize the system integrating land use and transport to obtain x*(t*), which is a
reachable point of the real system, by means of introducing optimal policies. Finally, also in future
work, we have to find the set of subsidies/taxes by location and agent (households and firms) that
induces the land use and transport equilibrium to be the optimum x*.

The land use planning problem is not realistic because it considers travel times £ as given, and we
know that they depend on the location pattern. But this problem is theoretically relevant as a step
towards solving the integrated land use and transport optimal policies for a large set of objectives
of the planner. This planning problem is formulated in Section in terms of its primal and dual
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problems and in Section we prove existence and uniqueness of the optimal primal-dual solution
under suitable conditions. Next, in Section we propose a primal-dual splitting algorithm inspired
on Bricefio-Arias and Combettes (2011), which converges to the unique primal-dual solution. In
Section , we examine an application for the case where the planning goal is to attain spatial socio-
economic homogeneity and, finally, in Section , we provide numerical simulations revealing the
improvements that our approach can contribute in terms of homogeneity. Let us start with some
notation and preliminaries.

Notation. Let (7, - ||) be a finite dimensional Euclidean space and denote by I'o(H) the
family of lower semicontinuous convex functions ¢: H — ]—o00,+0oc] such that domy =
{reH ‘ ¢(r) < +oo} # @. A function p: H — |—o0, +00] is coercive if limj,|— 400 p(T) =
+o0o. Now, let ¢ € ['o(H). The conjugate of ¢ is the function ¢* € ['4(H) defined by

©*: u — sup,ey({x | u) — o(x)). Moreover, for every x € H, ¢ + ||z — -||*/2 possesses a
unique minimizer, which is denoted by prox,, x. Alternatively,

prox, = (Id +8¢)~", (1)

where dp: H — 2" x = {ueH | (VyeH) (y—z|u)+¢(x) < ¢(y)} is the subdifferen-
tial of . In the particular case when ¢ is differentiable in some subset C' of H, we have, for every
x € C, 0p(x) = {Vp(x)}. For every convex subset C' of H, the indicator function of C', denoted
by t¢, is the function which is 0 in C' and +oco in H \ C.

The following result will be useful in the following sections and some parts of it can be derived
from the proof given in Rockafellar (1970, Corollary 26.3.1). For the sake of completeness we
provide the proof.

Lemma 1 Let ¢: dom¢yp C R — |—oc,+o0] be strictly convex, differentiable in int dom ),
and such that ran(¢)') = R. Then, " is strictly convex, differentiable in domvy* = R, and
rany* C dom ). Moreover,

= ()T i = (@) ) and () = ()7 2

Proof:  Since 1 is strictly convex, differentiable in int dom ¢, and ran(¢)’) = R, we have that
Y’: intdom) — R is strictly increasing and surjective. Hence, (¢/')~!: R — int dom ¢ exists,
it is strictly increasing too, and dom(z)’)~! = R. Since Bauschke and Combettes (2011, Propo-
sition 16.13) asserts that (¢/')~! = (¢/*)’, we conclude that «/* is strictly convex, differentiable,
rant* C dom4), and dom* = R. Finally, (2) follows from Hiriart-Urruty and Lemaréchal
(1993, Proposition 6.2.1). O

2 PRIMAL-DUAL FORMULATION

Let C' be the set of types of households and suppose that one firm controls the real estate supply. For
every i € N, let S; € |0, +00] be the supply in the node ¢ and, for every h € C, let Hj, € ]0, +00]
be the demand of the households type A in the land use market. For every h € C'and i € N,
we denote by x,; the number of households type h localized in ¢ and we set z,; € R be the
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utility perceived by the household % on the location 7. These utilities are assumed to be constant
and known. Hence, transportation costs, accessibility, location externalities, and other features
affecting these utilities are assumed to be exogenous. Additionally we assume the market clearing
condition 7" = ) iEN Si=> nec Hns 1.€., we suppose that the number of households demanding
for a location coincides with the number of available houses.

The assumptions on utilities and the latter condition are very restrictive. Indeed, externalities on
location exist as well as interaction between transportation and land use. A justification for not in-
cluding these interactions is that this problem can be seen in the short term modelling. On the other
hand, a more realistic scenario should include excess of supply or demand. These modifications
could be explored as part of further research.

Let us denote as € the class of functions ¢/: R x [0, 400 — |]—00, +00] such that

¥(z,-) is strictly convex and

(Vz € R) {

lim, . ¥(z,2) = +oo.

3)

This class defines the set of objective functions that we consider for solving the land use planning
problem defined as follows.

Problem 2 (Land use planning problem) For every h € C'and i € I, let z; € R, let ¢y; € €
such that dom ¢y (zps, -) = [0, ap[, for some ayp,; € |0, +00], let

= { RV (WieN) Sew=5 ad (heC) Y wwu=H) @

heC iEN

and suppose that

=N X X0, an] # 2. Q)
heCieN
The problem is to
mlrélenauze Z Z Uni(Znis Tni)- (6)
heC ieN

In Problem 2 the objective function belongs to the class %, that is, it is strictly convex and coercive.
Additionally we allow to functions (t¢y;)nec, ien to have as domain all the positive real numbers
(an; = +00) or, if necessary, have a restricted domain (a;; < +00). The latter case is justified in
cases in which the domain of the function has an upper bound. This is the case, for example, of
travel time costs on arcs, which goes to infinity as the flow reaches the capacity of the arc.

Example 3 Let ;1 € |0,4+o00[. In the particular case when, for every o € C and ¢ € N,
Yni: (2,2) = —xz+x(lnx — 1)/ € €, Problem 2 becomes

1
1~ht 7 l (A 1 7
mlr;}enjlze E g —XhiZhi + Mxh ( N Xy, ) @)
heC ieN

which is the bid-rent equilibrium problem presented in Bricefio-Arias et al (2008), the well known
entropy maximizing problem. Hence, this equilibrium problem can be seen as a particular case of
our framework.
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For computing the dual formulation of Problem 2, we need the following definitions and prelimi-
naries. Define
(@ RICXINT 5 |0, +00]

Z Z@%i(%z’,%i), ifex € X X domvp(zn,-)
x heC €N heCieN
~+00, otherwise (8)

A: RICIXIN _y RICI+IN]

o o (B (B,

where & = (74;)nec, scn is a generic element of RICIXINI,

Proposition 4 Let ¥ and A be defined as in (8). Then, the following statements hold.

(1) W is strictly convex, coercive, and

(\V/’}/ € ]07 +OOD prOX“/‘I’ = <prOX"/¢'hi(Zhiz') )heC, iEN’ (9)
(i1)) We have
T ROV ) —oe oo s w e D 0D ponilni, i), (10)
heC ieN

where, for every h € C'andi € N,
Onit (2hi> ) = Yni(2ns, )" (w) = sup (@ | ) — Pni(2ns, 1)) (1)

ze[(la’hi[

is differentiable. Moreover, ®* is differentiable and V¥* = (ppn;(2hi, ) )nec.ien- In addi-
tion, suppose that, for every h € C and i € N, n;(2p,-) is differentiable in |0, ap;[ and
ran(Yn:(2ni, )') = R. Then, for every h € C and i € N,

(Vu €R)  ¢ni(zni u) = (Wniznis -)) ™ (W) — g (20 (2, -)) 7 (1), (12)
Ori(Znis ) = (Vi 2k, ')')_1, and W™ is strictly convex.

(iii) A is linear, bounded, A*: (b,r) — (by, + 7i)nec,icn, where (b, 1) = ((bp)nec, (743)ien) is a
generic element of RI€TIN| and ||A|| = \/|C| + | N|.

Proof:  (i): Is a consequence of (8), the properties of the class % in (3), and Combettes and
Wajs(2005, Lemma 2.9). (ii): It follows from Bauschke and Combettes (2011, Proposition 13.27)
that O* = 3" > v Vni(Zhi, )" = D onec 2ien ©hi(Zni, -). The differentiability follows from
Hiriart-Urruty and Lemaréchal (1993, Proposition 6.2.1) and the last result follows from Lemma 1.
(iii): It is clear that A is linear and bounded. For every & € RI®*I¥l and (b,r) € RICHINI we
have

((b,7) | Ax) = Zlm(thi) + Zn(thi) =3 ani(bn + i) = (A*(b,7) | x).

heC iEN 1EN iEN heC ieN
(13)
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On the other hand, using the inequality 2zy < 22 4 y> we obtain, for every x € RICIxINI,

Azt =3 (me)2+§j (Zx)

heC “ieN i€EN NheC
= Z <Z T3+ Z Qxhixhj> + Z <Z T3+ Z 2$hi$gi>

heC NieN i iEN NheC g#h
SHOIETCTENDIEAED ORI IS

heC MieN €N i€EN NheC heC
= (IC] + [N Dl (14)

which yields [|A| < +/|C| + |N|. The equality follows by taking, in particular, for every (h, i) €
C x N, xp; = 1, which yields

1Az =Y [N+ Y ICF = (IC]+ INDICIIN| = (IC] + [N]) ] (15)

heC 1eEN

Hence ||A]| = /|C|+ |N|. O

Proposition 5 Under the assumptions of Problem 2, the dual problem associated to (6) is

minimize  ®(b,7) ==Y Hpbu+ Y Siri+ D nilenis—bn —1:),  (16)

ICIHIN]
(br)eR heC iEN heC ieN

where (pni)nec,ien are defined in (11)

Proof: Indeed, Problem 2 can be written equivalently as

minimize ¥(x), (17)
2eRICIXIN]
Axz=(H,S)

where W and A are defined in (6). Therefore, from Bauschke and Combettes (2011, Proposi-
tion 19.19) we have that the dual problem is

minimize ¥*(—A*(b,r)) + ((b,7r) | (H,S)), (18)

(b,r)€RICIFIN]
or equivalently, from Proposition 4(ii)—(iii),
mlg&l‘rg‘lggv ‘ Z Z Oni(2ni, —bn — 1) + Z Hyby, + Z Sirs, (19)
heC ieN heC 1EN
and the proof is finished. 0
Remark 6 Note that, for every (b,r) € RI¥%“M and o € R, ®(b+ o, 7 — a) = ®(b,r), where
b+a= (b +a,... b +a)andr —a = (r1 —«a,..., 7N — a), which follows from the market

clearing assumption » , . Hy = Y ..y Si. Hence, for having uniqueness of the solution, we have
to consider some additional constraints in the dual problem.
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Remark 7 Let i € ]0,4oc[. In the particular case when, for every h € C and i € N,
Ypi: (z,0) = —xz+x(lnx — 1)/ € €, (16) becomes

minimize Z by, + Z Sirs + — Z Z et#ni=bn=ri) (20)

[Cl+|N|
(b.r)eR iEN P e ien

which is the dual problem associated to the well known entropy maximization problem (7) (see
Bricefio-Arias et al, 2008). The first order optimality conditions of (20) are

] wlzhi=bn=ri) — [T
(Yh € C)(¥i € N) {ZZGN © " 1)

Zhec eﬂ(zhi—bh—ﬁ') =5

and we deduce that the solution to the primal problem is ,; = e/(#i=a=73),

3 EXISTENCE AND UNIQUENESS OF SOLUTIONS

Proposition 8 Problem 2 has a unique solution (Tni)nec,ien- In addition, let n € R and suppose
that the dual problem considers one of the following constraints:

(i) be Dy ={beR|b =n}

(i) be Dy={be R | L3, cobn=n}
(iii) 7 € Dy = {r e RN | ry =}
(iv) r € Dy={r e RV | 537 v ri = n}.

Then the dual problem (16) has a unique solution ((bw)hec (Fi)ien). Moreover, for every h € C
and i € N, Tni = (ni(2ns, -))/(bh +7;), where (0ni(2ni, *) )necien are defined in (11).

Proof: Since ¥ € T'o(RI°I*IN1) is coercive, = is closed and convex, and (5) yields ZNdom ¥ # &,
Bauschke and Combettes (2011, Proposition 11.4(i)) asserts that the primal problem has solutions.
It follows from (17) that Problem 2 can be written equivalently as

inimize ¥ Ax). 22
TimiE @)+ sy (Ae) 22
Note that ¢y g)y € To(RICHN) is polyhedral. Now, since (H, S) € 10, +oo[“"* it follows
from (5) and (8) that
(H,S) € int <A< X X [O,ahi[>> = X 10,an] x X]0,a4, (23)
heCieN hec ieN

where, for every h € C, ar, = Y ,.;ani and, for every i € N, a; = Y, .- an;. Hence, from
Bauschke and Combettes (2011, Fact 15.25) we have inf(¥ + ¢f(g,6)y ©A) = — min(¥* o —A* +
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t{(r.s)y)- Therefore, we have existence of solutions to the dual problem. Moreover, it follows

from Proposition 4(ii) that ¥* is differentiable in R!“I*I"! Altogether, Bauschke and Combettes
(2011, Proposition 19.3) asserts that Problem 2 has a unique solution

z = V¥ (A'(b,7)), (24)

where (b,7) is a solution to the dual problem (16). Moreover, it follows from Lemma 1 and
Proposition 4(iii) that (24) is equivalent to

(Vh € C)(Vl € N) Thi = (whi(zhi, )*)/([_)h —I—Fi) = (gphi(zhi, ))l([_)h —I—ﬂ). (25)

Finally let us prove that, under one of the constraints (i)—(iv), ® is strictly convex and, hence, the
dual problem (16) has a unique solution. Indeed, it follows from Lemma 1 that, for every h € C'
and i € N, gy, is strictly convex. Let (b*, 1) # (b, 72) be vectors in RI“I*IN and let o € |0, 1].
We have

®(ad,r) + (1-a) Z Hy(aby, + (1 —a)b}) + Z Si(ary + (1 —a)r?)
heC ieEN
+ 3 oni(zni —(aby + (1= a)bd) — (ar} + (1 — a)r?))
heC ieN
= a(Zth}L + ZS,T}) +(1— a)(Zthi + ZS,T?)
heC iEN heC iEN
3N ni(eni a(=b) — ) + (1 — @) (b2 — 12)). (26)
heC ieN

Since, for every h € C and i € N, pp;(zn;, ) is strictly convex, it is enough to prove that, under
one of the constraints (i)—(iv), there exist hg € € and iy € N such that — rm + bho — rm,
in which case from (26) we obtain that

®(a(b',r!) + (1 - a)(¥* 7)) < a®(b',r') + (1 — a)®(b*, r?), (27)
and the result follows. Let us proceed by contradiction. Suppose that
(Vhe O)(Vie N) —b, —ri =—b} —rZ. (28)

If (i) holds, we have b} = b? = 5 and we deduce from (28) in the particular case & = 1 that,
for every i € N, r} = r?. Hence, it follows again from (28) that, for every h € C \ {1},
b, = b?, which contradicts (b',r) # (b* r?). Now suppose that (ii) holds. Then We have
> necbh = Dohec bi = n and, by summing in % in (28), we deduce, for every i € N, r{ = r7.

The contradiction is obtamed in the same way as before. The cases (iii) and (iv) are analogous. 0

Remark 9 We deduce from Proposition 8, Example 3, and Remark 7 that (7) and (20) have unique
solutions depending on the utilities z = (zp;)rec, icy under one of the additional conditions b €
Dy, b € Dy, r € Dy, orr € Dy. We will denote by (z4:(2))nec,ien and by (bgn(2))rec and
(rk.4(2))ien for k € {1,...,4} such solutions, respectively.
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4 ALGORITHM AND CONVERGENCE

The algorithm proposed in this section for solving Problem 2 and its dual is a consequence of the
following result which is derived from Bricefio-Arias and Combettes (2011, Proposition 4.2). This
method finds its roots in a splitting method for finding the zero of two maximally monotone oper-
ators provided in Tseng (2000), which is an extension of the well known proximal point method
(Martinet, 1970 and Rockafellar, 1976).

Proposition 10 Let H and G be two finite dimensional spaces, let ¥ € I'o(H), let uw € G, and let
A: H — G be linear and bounded. Suppose that A # 0 and that

gra(0®) N (H x ran(A%)) # @. (29)
Consider the primal problem
migiegize ¥(x) + tyu(Ax), (30)
and the dual problem
migierélize U (—A'v) + (u | v). (31)

Let (€,)nen be an absolutely summable sequence in ‘H, let ¢y € H, let vg € G, let ¢ €
10, 1/(|A|l 4+ 1)[, let (yn)nen be a sequence in [, (1 — £) /|| Al ], and set

Yin = Tn — A v,
Piyp = DPIOX, ¢ Y1, T €n

Doy = Un + Yn(Az, — u)
Vn € N ’ 32
( ) Vpt1 = Up + ’Yn(Apl,n - u) (52)
q, = pl,n - VHA*pZn
Lnt+1 = Ln — Y1 + 4,

Then the following statements hold for some solution T to (30) and some solution v to (31) such
that —NVW¥ (x) € ran A™.

(1) x, —py, — 0and v, — py,, — 0.

(i) ©, > T, p;, > T, v, >V, and py,, = .

Proof:  Since Jug,y = H, the results are direct consequence of Bricefio-Arias and Combettes
(2011, Proposition 4.2) when most of errors are zero. U

Proposition 11 Forevery h € C andi € N, let (ep; ,)nen be an absolutely summable sequence in
R, let xpio € R, let (bno,Ti0) € R? let ¢ € }0, 1/(V/|C]+ |N|+1) [ let (7, )nen be a sequence
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inle, (1 —¢)/y/|C|+|N|], and set

For every h € C'andi € N

Yikin = Thign — Y (Ohp + Tin)

| Pihi;n = PTOXy (o) Ylhizn T Chin

For every h € C

Dohn = bhp + 771((%1':6]\[ Thip — Hp) )
b1 = b + Yo D ien Pihin — Hp

(Vn € N) For every1 € N = (33)

P2in = Tin + ’Yn(Zhec Thin — Sz')

| Tin+1 = Tin T+ ’Yn(Zhec Plhin — Sz')

For every h € C'andi € N

Ghin = Pihin — Yn(P2hn + D2in)
| Thin+1 = Thin — Yihin T Ghin

Then the following statements hold for some solution ((Tni)nec)ien to Problem 2 and some solu-
tion ((bp)nec, (Ti)ien) to its dual in (16).

(i) Foreveryh € Candi € N, xp; — Prhin — 0, bhyy — Ponpn — 0, and vy, — pasp, — 0.

(ii)) Foreveryh € Candi € N, Tpip — Thir Dihin — Thi> bnn — b Dohn — by, Tim — Ti
and P2in — T

Proof: Let W and A as in (8). Condition (29) follows from Proposition 4(ii), and Proposition 4(iii)
asserts that ||A]| = /|C|+ |N|. Moreover, we deduce from the proof of Proposition 5 that
Problem 2 is equivalent to (30) and its dual is equivalent to (31). Therefore, the results are a
consequence of (9) and Proposition 10 when H = RICI*XINI G = RICHINI 4 = (H, S), for every
n € N, v, = (b,,,), where b, = (byn)nec € R and 7, = (r;,,)ien € RV O

The difficulty of the algorithm proposed in Proposition 11 lies in the computation, for every h € C,
i € N,and n € N, of prox ,, .., . Several examples in which the proximity operator can be
computed explicitly can be found in Combettes and Wajs (2005). The following result shows some
interesting cases in which an explicit computation of the proximity operator can be obtained.

Lemma 12 Let z € R, a € ]0,+00], b € |0, 4+00[, v € |0, +00], and p € ]0, +0o0].

(1) Letv: (z,x) — —zx + %x(lnx —1). Then v € € and prox. .y, y: T %W(%e“(m/wz)),
where W is the product log function.

(i) Let v: (2,7) = tjo400] — 22 + a(x — b)%. Then v € € and prox.,, y: * +— max{(r +
[0,+00] YY(z,")
vz + 2vab) /(1 + 2va), 0}

Proof: Let (z,p) € R?% It is clear from (3) that both functions are in 4. (i): We have p =
PLOX. ;) & & 2—p =Y(2,) (p) & w+yz =p+Ilnp & Lotpz = Eptlnp & et =

pei? & Ep= W(%e“(x/“’“)), and the result follows. (ii): We have p = prox. ,, y& < z—p €
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70Y(2,-)(p) & x—p € N 4oo[(p)—v2+27a(p—b) & x+72+2vab € Ny 4oof(p)+p(14+27a) &
(x + 72+ 27ab) /(1 + 2va) € Ny yoo[(p) +P & P = Posool((x + 72 + 27ad) /(1 + 27a)),
which yields the result. O

S APPLICATION

We consider the case where the policy maker seeks the combined objective of maximizing agents
utilities and minimizing a measure of spatial socio-economic homogeneity.

Consider the definitions and notations introduced in Section . A standard measure for the socio-
economic homogeneity for a location = (Zp;)nec,ieny € = 18

2
SI@) =" (M - 7) , (34)

S.
ieEN t

where [ = Zhec Hp, 1,/ T and, forevery h € C, I), € ]0, +o0] is the average income of households
type h. Instead of using this measure, in the following proposition we provide a related measure
which is separable as the objective function in (6).

Proposition 13 Let © = (xhi)nec,ien € = and define the zone segregation level and the aggre-
gated segregation level by

(Vie N) SLi(w) =Y In(an/Si — Ha/T)* and SL(m) =) SLi (35)

heC ieEN

respectively. Then, 0 < SI(x) < (3,.c In)SL(x) and the unique minimizer of SL, xs;, =
<(SiHh)/T>hec e IS aminimizer of SI.

Proof:  Since the SL is strictly convex and coercive it has a unique minimizer xg;, € =. Let
x* = ((SeHn)/T),co sen- Since SL(z*) = 0 and SL is a positive function, it is clear that

xs, = x*. Moreover, let € = (zpi)nec ien € =. It follows from (34), (35), and Bauschke and
Combettes (2011, Lemma 2.13(ii)) that

0<SI(m) =) <Z[h Zni/Si — Hy)T) ) (Zh) SL(x (36)

iEN \heC heC
and, hence, SI(xs;) = 0, which yields the result. O

The problem under consideration in this section is to find a location which minimizes the aggre-
gated segregation level and, simultaneously, maximizes the total utility. More precisely,

. 1 2
mgﬁl]é‘rg‘lxz‘%‘ — Z Z ThiZni + o Z Z In(zhi/Si — HpJT)", (37)
=By heC ieN heC ieN

where = is defined in (4) (market clearing) and o > 0. This parameter is a measure of the impor-
tance of the utility of households in the planning objective function. The higher is «, the higher
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is the importance of the utility for the planner. The lower is «, the higher is the importance of the
segregation level for the planner.

Problem (37) is a particular case of Problem 2 when, for every (h,7) € C' X N, tp;(2ps, ) € —
—xzp; + In(x/S; — Hp/T)? /. Tt follows from Lemma 12(ii) that functions (¢5;)necicn are in
% . Therefore, it follows from Proposition 8 that (37) has a unique primal solution x,(z), which
is called social optimum, and a unique dual solution (c,(z), d’,(z)) under the additional condition
dy o = 0. The following proposition asserts that, for & small enough, the dual solution does not
depend on «. It also provides a connection between the aggregated segregation level in the social
optimum solution to (37) and the parameter «.

Proposition 14 Set o > 0 small enough. Then, the dual solution does not depend on «, i.e.,
(ci(z),d,(z)) = (c"(z),d"(z)). Moreover, the segregation level defined in (35) in the social

optimum is
S2
SL(z ZZ (2 — ch(2) — di(2)). (38)

heC ieN

Proof: Suppose that x},(z) is strictly feasible, i.e., that, forevery h € C'and i € N, x}, (2) > 0.
Then, the first order conditions of (37) yield

. * HhS@ S2 * *
(heCNieN) =20 0B~ d). ()
h

where (cj, ,(2))nec and (df ,(2))icn are the Lagrange multipliers of the constraints in = (dual
solution). Imposing these constraints on the primal solution (x;‘na) hec,ieN We obtain

. \ S~ (zni — 6, o (2) — di (%))
(VieN) Si=) ah,= S+a?§: T (40)
heC hEC
Vhe(C) H,= iy H — 2 (2 —d 41
( < ) h ieZN$hlya h+a21h ZGZNS Zhi ,a ) dz,a(z))7 ( )

which yields that, under the additional condition d; = 0, the dual solution is the unique solution to
the system

VheC) = (zni—di); (42)
ieEN

(Vi€ N) ds =Y (2ni— cn)Bns (43)
heC

where, for every h € C'andi € N, B, = I,;'/ > o 17 and 6; = S7/ 3.y S]2 Hence, the dual
solution does not depend on « and it follows from (39) that the primal solution is strictly feasible

for a small enough. Finally, (38) follows from a straightforward computation. O

Note that, the segregation level is increasing in «, which is natural from the definition of this
parameter.
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In addition, observe that (5) is easily satisfied since dom 9, (2p:, -) = [0, +00[. Therefore, we can
solve problem (37) by using the algorithm proposed in (33), which, by applying Lemma 12(i1),
becomes (we set e, = 0)

For every h € C'andt € N
Yihiz = Thin — Yn(Ohp + Tin)
| Prnin = max{ (Yinin + Ya2ni + 2D Hin/(aS:T)) /(1 + 27,10/ (aS2)), 0}
For every h € C
P2hn = bh,n + 7”((%@’36]\/ LThim — Hh)
b1 = b + Yl D _sen Pihin — Hi
(¥n €N) For every i € N ! = )
D2in = Tin + ’Yn(Zhec Thin — Sz')
| Tin+1 = Tip + %(Zhec Pihign — Sz')
For every h € C'andt € N
Qihin = Pihin — Yo(Dorn + P2in)
| Thin+1 = Thin — Yihin T 1hin-

(44)
If the sequence (v, )nen is in |0, (|C| + | N])~/2], Proposition 11 asserts that, for every i € C' and
i € N, the sequence (p; »)nen converges to some x, and * = (7, )nec, e is the solution to (37)
and, additionally, the sequence (by, ., 7s.n)nen converges to some (bf, 7f) and ((b)nec, (1} )ien) is
a solution to the associated dual problem.

Remark 15 Note that in this case the proximal step (where prox,, .., ) is computed) in the algo-
rithm (33) is easy to compute numerically avoiding the use of any error term.

6 SIMULATIONS

In this section we provide simulations in a fictitious city in which the segregation is high. The
purpose of these simulations is to show that the planning problem obtains a location which has
better levels of homogeneity verifying the convergence of the algorithm, and to verify the depen-
dence of the social homogeneity with respect to the parameter «v. Hence, as an example, we take
arbitrary values on the supply, demand (satisfying market clearing condition), and utility.

We model the location of the households by problem (7) and we compute its solution via the
biproportional algorithm proposed in Macgill (1977). On the other hand, we solve the planning
problem presented in (37) by the method in (44) for obtaining a location with less segregation.
Afterwards we compare these solutions.

We consider a city with 10 zones (|N| = 10) and 5 types of households (|C| = 5). The con-
vergence criteria of the algorithm for solving problem (7) is ||b, — b, 1||/]|bn]] < 1071 and
|75 — Posill/l|7n]] < 1071°, The real estate supply per zone and the number of households per
type are S = (51,...,S510) = (25,37,24,21,34,43,23,27,20,14) and H = (H,,...,Hs) =
(50,56, 51,60, 51), respectively, and the total supply (or demand) is 7" = 268. The average in-
come of households per type is I = ([1,...,15) = (2,4,6,8,10). Additionally, the utilities
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Table 1: Utilities perceived by a household of every type for every zone.

, '1° 2 3 4 5 6 7 8 9 10
1 |50 50 50 0 0 0 0 -5 -50 -50
2 150 50 0 0 0 0O 0 -50 -50 -50
3 /|50 50 0 0 50 50 50 50 0 O
4 0o 0 0 5 5 5 0 0 0 0
5 |-50 -50 50 0 0 O 50 50 50 50

zZ = (Zni)nec,icn are presented in Table 1. We recall that, for every h € C'and i € N, z,
represents the utility perceived by a household type A for a location in .

Table 2 presents the equilibrium Z(2) = (Tpn:i(2))nec, icn Obtained by solving (7) via the algorithm
in Macgill (1977) with i = 5 x 1072. It also shows the segregation level of the equilibrium by
zone and in the whole city computed by (35). Additionally, in Figure 1 we show the percentage
of households of each type h € {1,...,5} located in every zone i € {1,...,10} in this case. We
remark the very high segregation in all zones.

Table 2: Equilibrium Z(z) and segregation level.

, 't 2 3 4 5 6 7 8 9 10 |SL(®)
1 9 13 19 2 2 3 2 0 0 0
2 6 23 3 3 3 4 3 0 0 0
3 o o I 1 11 14 9 13 1 1
4 o 1 1 15 16 21 1 2 2 1
5 o o o0 I 1 1 9 12 16 11
SL,(@) | 1.64 164 157 217 100 100 089 161 4.13 4.13| 19.78

In order to obtain a less segregated city, we consider the computation of the aggregated segregation
level in terms of « obtained by (38) in Proposition 14. The quadratic dependence of the aggregated
segregation level with respect to o is shown in Figure 3. Hence, for obtaining lower segregation
values we need to use lower values of « in the method (44).

We deduce from Figure 3 that an aggregated segregation level lower to 20 (approximately the
segregation of the equilibrium Z(z)) is obtained by considering a value of a lower than 1.3 x 107,
Considering the much lower value of @ = 3 x 1077, the solution x*(z) = (7},(2))hec,ien tO
(37) obtained by the algorithm (44) and the corresponding segregation level in every zone and
aggregated are presented in Table 3. In Figure 2 we exhibit the percentage of households of each
type h € {1,...,5} located in every zone i € {1,...,10} in this case. We observe that the
segregation level of «*(z) is is drastically reduced in every zone and the aggregated segregation
level reduces from 19.78 to 0.99. This coincides with the theoretical computation for o = 3 x 10~°
provided in Proposition 14, as we can observe in Figure 3.
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7 CONCLUSIONS

To the best of our knowledge, the land use planning problem defined in a discrete domain of loca-
tions and households remains open, so planners have no method to identify the optimum allocation
of households for specific objectives.

This paper formulates the land use planning problem that faces a planner policies who seeks
specifics objectives for the city. For a wide set of functions that represent different objectives,
we have proved that a unique location solution exists, i.e. a distribution of households in space
considering their socioeconomics differences, and we proposed an algorithm that converges to the
solution of the planning problem. We test the algorithm for an hypothetical city and show that
results can significantly improve the cities performance given the planner objective. The main
limitations of our method is the assumption that travel decisions and transport costs are exogenous
and there is now a need of a method to calculate optimal subsidies able to drive the land use market
to an optimum; both are topics for future research.
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Tables and Figures

Table 3: Solution * and segregation level.

, ! 1 2 3 4 5 6 7 8 9 10 |SL(x
1 7 116 4 5 6 4 3 3 2
2 7 13 5 4 6 1 4 4 3 2
3 3 2 4 4 8 11 5 7 4 3
4 5 7 5 5 9 12 4 5 4 3
5 3 4 3 4 6 1 6 8 6 4
SLi(xz*) [0.13 029 005 00l 004 006 007 020 0.0 0.05| 0.99
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Figure 1: Percentage of types of households by zone for Z(z).
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Figure 2: Percentage of types of households by zone for x*(z).
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Figure 3: Function a(SL).
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